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Biomass gasification for biofuels and bio-chemicals
- Long experience of medium-to-large scale synthesis gas technologies
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Key steps in the gasification-synfuels process of m
VTT
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= Air-blown CFB gasifier commercial, steam/O,-blown demonstrated at 12 MW
= Filtration demonstrated at 5 MW scale, commercial in air-blown gasification
= Reforming demonstrated at 5 MW scale

= Final gas cleaning commercial (similar to coal gasification)



Methanol production from biomass
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Methanol production from biomass
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HYBRID 1 — CO shift replaced with electrolysis H,



Methanol production from biomass
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Methanol production from biomass
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HYBRID 3 — Electrolyser dimensioned to produce all oxygen consumed at the plant




VTT’s pressurized O,/steam-blown CFB
gasification pilot plant at BioruukKki
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Preliminary testing of CO, recycling in m
VTT’s gasification pilot with forest residues
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Preliminary testing of CO, recycling in
VTT’s gasification pilot with forest residues
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Preliminary testing of CO, recycling in m
VTT’s gasification pilot with forest residues

mBenzene OLighttars ®Naphthalene BHeavier tars

12000 [
10 000 |
8000 | i Tar and benzene
| 'asoatonset” || | 50 %of steam 45% of steam |
r 9 replaced with CO, replaced with CO concentrations
6 000 oint (base case) P 2 o
FLE after gasifier

4000 |

Concentration, mg/m3n (dry gas)

2000
’ UCG 24/12B UCG 24/12C UCG 24/12D Set point
Forest residue Forest residue Forest residue Feedstock
Ceonv 836 847 845 Gasifier (top), °C
96-97% 857 875 866 Gasifier (bed), °C




Estimated energy balances and efficiencies for
MeOH production from forest residue feedstock
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= Steam/O, CFB gasification: 880 °C, 4 bar

= Filtration: 550 °C

= Catalytic reforming: outlet temperature 900 °C
= MeOH synthesis: 260 °C, 80 bar



Estimated distribution of feedstock carbon
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Estimated production cost of methanol
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Conclusions m

= Hybrid gasification-synthesis process with CO, recycling to the gasifier and the
reformer (to replace part of the steam feed) is estimated to have significant potential in
improving synthetic fuels yield, process efficiency and carbon efficiency.

= Preliminary experimental work in steam/oxygen-blown CFB gasification conditions
would suggest that replacing 50% of the steam feed in the gasifier and the catalytic
reformer would not compromise gasifier/reformer performance. However, more
extensive testing and especially long-term runs are needed to verify this assumption
and the technical limitations for CO, recycling.

= In methanol production from biomass, hybrid concepts that couple gasification with
electrolysis are estimated to be economically attractive already with current electricity
price levels. CO, recycling has the potential for further cost reductions especially with
lower electricity prices.
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